Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Gut Microbes ; 16(1): 2329147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528729

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by immune-mediated, chronic inflammation of the intestinal tract. The occurrence of IBD is driven by the complex interactions of multiple factors. The objective of this study was to evaluate the therapeutic effects of IAA in colitis. METHOD: C57/BL6 mice were administered 2.5% DSS in drinking water to induce colitis. IAA, Bifidobacterium pseudolongum, and R-equol were administered by oral gavage and fed a regular diet. The Disease Activity Index was used to evaluate disease activity. The degree of colitis was evaluated using histological morphology, RNA, and inflammation marker proteins. CD45+ CD4+ FOXP3+ Treg and CD45+ CD4+ IL17A+ Th17 cells were detected by flow cytometry. Analysis of the gut microbiome in fecal content was performed using 16S rRNA gene sequencing. Gut microbiome metabolites were analyzed using Untargeted Metabolomics. RESULT: In our study, we found IAA alleviates DSS-induced colitis in mice by altering the gut microbiome. The abundance of Bifidobacterium pseudolongum significantly increased in the IAA treatment group. Bifidobacterium pseudolongum ATCC25526 alleviates DSS-induced colitis by increasing the ratio of Foxp3+T cells in colon tissue. R-equol alleviates DSS-induced colitis by increasing Foxp3+T cells, which may be the mechanism by which ATCC25526 alleviates DSS-induced colitis in mice. CONCLUSION: Our study demonstrates that IAA, an indole derivative, alleviates DSS-induced colitis by promoting the production of Equol from Bifidobacterium pseudolongum, which provides new insights into gut homeostasis regulated by indole metabolites other than the classic AHR pathway.


Assuntos
Bifidobacterium , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Equol/metabolismo , Equol/farmacologia , Equol/uso terapêutico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
2.
PLoS One ; 19(3): e0288946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536793

RESUMO

Equol is produced from daidzein by the action of gut bacteria on soy isoflavones. However, not all people can produce equol, and metabolism differs even among the producers. We aimed to examine the equol producer status in both men and women, and investigate the relationships among the serum and urinary isoflavones as well as to other biomedical parameters. In this study, we measured the equol and daidzein concentrations from the blood and urine of 292 men and 174 women aged between 22 and 88 years by liquid chromatography-tandem mass spectrometry (LC‒MS/MS). We then analysed the cut-off value for equol producers in both sexes, the relationship of serum and urinary equol concentrations, and other parameters, such as sex, age, endocrine function, glucose metabolism, lipid metabolism, and renal function with regards to equol-producing ability, among the different age groups. Equol producers were defined as those whose log ratio of urinary equol and daidzein concentration or log (equol/daidzein) was -1.42 or higher. Among 466 participants, 195 were equol producers (42%). The proportion of equol producers was larger in women. The cut-off value for equol producers was consistent in both sexes. Positive relationships were noted between serum and urinary equol levels in equol producers of both sexes; however, such a relationship was not detected in nonproducers. Lipid and uric acid abnormalities were more common with non equol producers in both men and women. Prostate specific antigen (PSA) levels in men were significantly lower in equol producers, especially in those in their 40 s. This study suggests a relationship between equol-producing ability and reduced risk of prostate disease as well as positive effects of equol on blood lipids and uric acid levels. However, lack of dietary information and disperse age groups were major drawbacks in generalizing the results of this study.


Assuntos
Equol , Isoflavonas , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/metabolismo , Japão , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Ácido Úrico , Isoflavonas/metabolismo
3.
Appl Environ Microbiol ; 90(4): e0000724, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501861

RESUMO

With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.


Assuntos
Equol , Isoflavonas , Animais , Humanos , Camundongos , Ratos , Suínos , Equol/genética , Equol/metabolismo , Racemases e Epimerases , Galinhas/metabolismo , Isoflavonas/metabolismo , Oxirredutases/metabolismo
4.
Mol Nutr Food Res ; 68(6): e2300688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342595

RESUMO

The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like ß-glucuronidases and ß-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Feminino , Humanos , Fitoestrógenos , Microbioma Gastrointestinal/fisiologia , Equol/metabolismo , Estrogênios/metabolismo , Neoplasias da Mama/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37899210

RESUMO

BACKGROUND: Zinc absorption and competition among gut bacteria have been reported in animal studies. Thus, gut bacteria may modify zinc availability in humans. Metabolism of intestinal bacteria is known to be necessary for the activation of several phytoconstituents in the body. For example, equol, a typical substance of soybean isoflavone, is produced by intestinal bacteria metabolizing daidzein and the enterotype is one of distinct ones among Japanese population. The difference in the intestinal microflora can modify the bioavailability of zinc. In this study, we examined urinary zinc concentrations in adult female equol producers (EQPs). METHODS: Urine samples from women participating in health examinations in Miyagi, Okinawa, Kyoto, Kochi, and Hokkaido prefectures were used; from total 17,484 samples, approximately 25 samples were randomly selected for each age group from 30 to 60 years per region (subsample: n = 520), and 520 samples with available urinary zinc concentration (determined by flame atomic absorption analysis) and enterobacterial type were analyzed. EQP was defined as log(equol/daidzein) ≥ -1.42, and urinary concentrations were corrected for creatinine concentration. Urinary zinc concentrations were compared by Student's t-test and multiple regression analyses. RESULTS: The geometric mean urinary zinc concentration (µg/g-Cr) was lower in EQP than in non-EQP (p = 0.0136 by t-test after logarithm transformation). On the other hand, there was no correlation between urinary zinc concentration with daidzein (r = -0.0495, P = 0.436) and equol concentrations (r = -0.0721, P = 0.256). There was a significant negative association between urinary zinc concentration and EQP (ß = -0.392, P = 0.0311) after adjusting with other potential confounding variables, such as daidzein intake. CONCLUSIONS: The results suggest that gut bacteria that produce equol are involved in the metabolism of zinc. Based on previous studies, the bacteria that affect the metabolism of both substances are thought to be Enterococcus. Future studies are expected to identify specific intestinal bacteria for zinc availability and understand individual differences in the effects of micronutrients.


Assuntos
Equol , Microbioma Gastrointestinal , Isoflavonas , Zinco , Adulto , Animais , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Transversais , População do Leste Asiático , Equol/metabolismo , Isoflavonas/metabolismo , Zinco/metabolismo , Zinco/urina , Microbioma Gastrointestinal/fisiologia , Distribuição Aleatória
6.
Front Biosci (Landmark Ed) ; 28(7): 154, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37525926

RESUMO

BACKGROUND: While cannabidiol (CBD) and 4',7-isoflavandiol (Equol) have been examined individually in various skin studies, the present investigation tested whether topically applied CBD with Equol may yield enhanced effects on human skin biomarkers. METHODS: After 24 hours exposure human skin gene expression was measured by quantitative polymerase chain reaction-messenger ribonucleic acid (qPCR-mRNA) analysis across 9 functional skin categories covering 97 biomarkers. RESULTS: In general, among the biomarkers analyzed the CBD with Equol treatment displayed greater efficacy compared to CBD only or the Equol treatment alone (e.g., 4 out 5 for anti-acne, 15 out of 17 for anti-aging [e.g., collagen, elastin, calcium binding protein A7, tissue inhibitor of matrix metalloproteinase 1 (TIMP 1), etc.], 19 out of 21 for anti-inflammatory (pain), 10 out of 11 for antioxidants to protect against oxidative stress, 6 out of 6 for circadian rhythm regulation for cell repair/restoration, 10 out of 15 for anti-pigmentation properties, 4 out of 5 for skin hydration, 6 out of 6 for tissue integrity, and 11 out of 12 for wound healing properties). CONCLUSIONS: CBD with Equol displayed synergistic effects that may be an effective topical treatment for dermatology and cosmetic applications to improve human skin health and reduce photo-aging.


Assuntos
Canabidiol , Equol , Humanos , Equol/farmacologia , Equol/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Pele , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Inibidor Tecidual de Metaloproteinase-1/metabolismo
7.
J Gastroenterol Hepatol ; 38(11): 1958-1962, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37565591

RESUMO

BACKGROUND AND AIM: Equol is a metabolite of soy isoflavone and has estrogenic activity. The incidence of non-alcoholic fatty liver disease (NAFLD) increases after menopause in women, which is thought to result in a decrease in estrogen. This study aimed to evaluate the association between equol and NAFLD. METHODS: We evaluated 1185 women aged 50-69 years who underwent health check-ups at four health centers in Fukushima, Japan. Equol producers were defined by a urinary equol concentration of 1.0 µM or more. In addition to comparison between equol producers and non-producers, the association between equol and NAFLD was estimated using logistic regression analysis adjusting for fast walking and eating habits. RESULTS: Of the 1185 participants, 345 (29.1%) women were equol producers. The proportions of women who had NAFLD (34.8% vs 45.2%) were significantly lower in the equol-producing group than in the non-producing group. Multivariable logistic regression analysis showed that equol production was significantly associated with NAFLD (odds ratio = 0.66, 95% confidence interval: 0.51-0.86). CONCLUSIONS: Equol production was significantly associated with NAFLD in women in their 50s and 60s.


Assuntos
Equol , Isoflavonas , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População do Leste Asiático , Equol/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fitoestrógenos/metabolismo , Pós-Menopausa , Idoso
8.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111176

RESUMO

Soybean is the most economically important legume globally, providing a major source of plant protein for millions of people; it offers a high-quality, cost-competitive and versatile base-protein ingredient for plant-based meat alternatives. The health benefits of soybean and its constituents have largely been attributed to the actions of phytoestrogens, which are present at high levels. Additionally, consumption of soy-based foods may also modulate gastrointestinal (GI) health, in particular colorectal cancer risk, via effects on the composition and metabolic activity of the GI microbiome. The aim of this narrative review was to critically evaluate the emerging evidence from clinical trials, observational studies and animal trials relating to the effects of consuming soybeans, soy-based products and the key constituents of soybeans (isoflavones, soy proteins and oligosaccharides) on measures of GI health. Our review suggests that there are consistent favourable changes in measures of GI health for some soy foods, such as fermented rather than unfermented soy milk, and for those individuals with a microbiome that can metabolise equol. However, as consumption of foods containing soy protein isolates and textured soy proteins increases, further clinical evidence is needed to understand whether these foods elicit similar or additional functional effects on GI health.


Assuntos
Isoflavonas , Proteínas de Soja , Animais , Proteínas de Soja/farmacologia , Isoflavonas/farmacologia , Equol/metabolismo , Fitoestrógenos/farmacologia , /metabolismo
9.
J Diabetes Investig ; 14(5): 707-715, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852538

RESUMO

AIMS/INTRODUCTION: Equol, which is produced by enteric bacteria from soybean isoflavones, has a chemical structure similar to estrogen. Both in vivo and in vitro studies have shown the beneficial metabolic effects of equol. However, its effects on type 2 diabetes remain unclear. We investigated the association between the equol producers/non-producers and type 2 diabetes. MATERIALS AND METHODS: The participants included 147 patients with type diabetes mellitus aged 70-89 years, and 147 age- and sex-matched controls. To ascertain the equol producers or non-producers, we used the comparative logarithm between the urinary equol and daidzein concentrations (cut-off value -1.75). RESULTS: The urinary equol concentration was significantly lower in the diabetes group compared with the non-diabetes group (P = 0.01). A significant difference in the proportion of equol producers was observed among all participants (38.8% in the diabetes group and 53.1% in the non-diabetes group; P = 0.01). The proportion of equol producers among women was significantly lower in the diabetes group (31.4%) than in the non-diabetes group (52.8%; P < 0.01). Additionally, the frequency of dyslipidemia in female equol producers was significantly lower than that in female non-equol producers (P < 0.01). Among men, no such differences were observed. We found a significant positive correlation between the urinary equol and daidzein concentrations among equol producers (r = 0.55, P < 0.01). CONCLUSIONS: Our study findings showed that postmenopausal women had a low proportion of equol producers with diabetes and dyslipidemia.


Assuntos
Diabetes Mellitus Tipo 2 , Equol , Microbioma Gastrointestinal , Isoflavonas , Idoso , Feminino , Humanos , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/urina , População do Leste Asiático , Equol/metabolismo , Equol/urina , Isoflavonas/metabolismo , Isoflavonas/urina , Idoso de 80 Anos ou mais , Microbioma Gastrointestinal/fisiologia , Fitoestrógenos/metabolismo , Fatores Sexuais , Pós-Menopausa/metabolismo , Pós-Menopausa/urina , Dislipidemias/metabolismo , Dislipidemias/microbiologia , Dislipidemias/urina
10.
Phytomedicine ; 108: 154509, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288653

RESUMO

BACKGROUD: Estrogen deficiency is the leading cause of postmenopausal osteoporosis(PMOP) and phytoestrogens soy isoflavones (SI) have been shown to improve PMOP. Equol (Eq), an in vivo metabolite of phytoestrogens soy isoflavones (SI), has a more stable structure and stronger biological activity than its parent compound and has the greatest estrogenic activity. However, there are few studies on the therapeutic effect of Eq on PMOP. PURPOSE: To explore the therapeutic effect and mechanisms of Eq on POMP. METHODS: Osteoblast-like cells ROS1728 were cultured with different doses of Eq, estradiol (E2), separately. The effect of Eq on the proliferation, apoptosis, cell cycle of osteoblasts were detected by CCK-8 and flow cytometry, and the expression of OPG/RANK/RANKL signaling pathway of osteoblasts was detected by Quantitative real-time PCR (qRT-PCR) and Western blot (WB), and RNA silencing technology were carried out to explore the receptors through which Eq plays a role. Then PMOP rat model was established and treated by Eq or E2 to further verification of the effect and mechanism of Eq on PMOP. RESULT: Eq promoted the proliferation and inhibited the apoptosis of osteoblasts and increased the proportion of osteoblasts in the S phase and G2/M phase in a dose-dependent manner. Mechanistically, Eq treatment upregulated the expression of OPG and OPG/RANKL ratio in osteoblasts and this regulatory effect was mainly mediated through the ERß receptor. Furthermore, in vivo study, Eq improved microstructure and BMD of the femur of PMOP rat model, which imitated the osteoprotective effect of E2. Moreover, the Eq or E2 treatment increased serum levels of Ca, 1,25(OH)2D3, bone Gla-protein(BGP), and Type I procollagen (PC1), and reduced serum levels of phosphorus (P), parathyroid hormone(PTH), pyridinol (PYD), tartrate-resistant acid phosphatase (TRAP) and urinary level of deoxypyridinoline (DPD) in the treatment OVX group compared with the untreated OVX group. Meanwhile, Eq or E2 markedly induced the mRNA and protein expression of OPG and OPG/RANKL ratio. CONCLUSION: Eq can combine with ERß and exert a protective effect on PMOP by upregulating OPG/RANKL pathway.


Assuntos
Osteoporose Pós-Menopausa , Humanos , Feminino , Ratos , Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/prevenção & controle , Osteoprotegerina/metabolismo , Equol/farmacologia , Equol/metabolismo , Receptor beta de Estrogênio/metabolismo , Fitoestrógenos/farmacologia , Ligante RANK/metabolismo , Osteoblastos
11.
Metabolomics ; 18(11): 84, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289122

RESUMO

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Assuntos
Isoflavonas , Animais , Camundongos , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Fenilalanina/metabolismo , Metabolômica , Estrogênios , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Ácidos Graxos Monoinsaturados , Esfingolipídeos , Glicerofosfolipídeos , Ácidos Araquidônicos
12.
ACS Synth Biol ; 11(12): 4043-4053, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36282480

RESUMO

(S)-Equol is the terminal metabolite of daidzein and plays important roles in human health. However, due to anaerobic inefficiency, limited productivity in (S)-equol-producing strains often hinders (S)-equol mass production. Here, a multi-enzyme cascade system was designed to generate a higher (S)-equol titer. First, full reversibility of the (S)-equol synthesis pathway was found and a blocking reverse conversion strategy was established. As biosynthetic genes are present in the microbial genome, an effective daidzein reductase was chosen using evolutionary principles. And our analyses showed that NADPH was crucial for the pathway. In response to this, a novel NADPH pool was redesigned after analyzing a cofactor metabolism model. By adjusting synthesis pathway genes at the right expression level, the entire synthesis pathway can take place smoothly. Thus, the cascade system was optimized by regulating the gene expression intensity. Finally, after optimizing fermentation conditions, a 5 L bioreactor was used to generate a high (S)-equol production titer (3418.5 mg/L), with a conversion rate of approximately 85.9%. This study shows a feasible green process route for the production of (S)-equol.


Assuntos
Equol , Isoflavonas , Humanos , Equol/genética , Equol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , NADP/metabolismo , Isoflavonas/metabolismo
13.
ACS Synth Biol ; 11(11): 3575-3582, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36282591

RESUMO

Introducing metabolic pathways to the gut is important to tailor the biochemical components ultimately absorbed by the host. Given identical diets, hosts possessing different consortia of gut bacteria can exhibit distinct health outcomes regulated by metabolic capabilities of the gut microbiota. The disparate competency of the population to metabolize isoflavones, such as dietary daidzein, has shown health benefits for those individuals possessing gut bacteria capable of producing equol from daidzein-rich diets. To begin addressing health inequalities due to gut metabolic pathway deficiencies, we developed a probiotic that allows metabolism of isoflavones to provide a gut phenotype paralleling that of natural equol producers. Toward this goal, we engineered Escherichia coli to produce the enzymes necessary for conversion of daidzein to equol, and as demonstrated in a murine model, these bacteria enabled elevated serum equol levels to dietary daidzein, thus serving as a starting point for more sophisticated systems.


Assuntos
Microbioma Gastrointestinal , Isoflavonas , Camundongos , Animais , Equol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Isoflavonas/metabolismo , Dieta , Microbioma Gastrointestinal/genética , Bactérias/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233223

RESUMO

S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-ß. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-ß is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.


Assuntos
Disfunção Cognitiva , Demência , Microbioma Gastrointestinal , Isoflavonas , Antioxidantes , Disfunção Cognitiva/prevenção & controle , Demência/prevenção & controle , Equol/metabolismo , Receptor beta de Estrogênio , Humanos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Fitoestrógenos/metabolismo , Receptores de Estrogênio
15.
Anim Sci J ; 93(1): e13720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417088

RESUMO

Dairy cows feed on isoflavones as physiologically active substances present in legumes. However, the influences of isoflavones (biochanin A, genistein, formononetin, and daidzein) and their metabolites (p-ethylphenol and equol) on milk components production, tight junctions (TJs), and their regulatory pathways are unclear in bovine mammary epithelial cells (BMECs). In this study, we investigated the influences of isoflavones and their metabolites in BMECs using an in vitro culture model. The influences of isoflavones on milk components production, TJ proteins, and STAT5/STAT3 signaling pathways were different in a type-specific manner. Biochanin A decreased the mRNA expression and secretion of both ß-casein and lactoferrin while a decrease in activated STAT5 and an increase in activated STAT3. In contrast, equol increased claudin-3, which is the main components for less-permeable TJs in lactation, while an increase in activated STAT5. In addition, a mixture of multiple isoflavones based on the intake of red clover increased secretion of lactoferrin, mRNA expression of ß-casein, and amount of claudin-3, but a mixture based on soy did not affect the BMECs. Thus, these results indicate that isoflavones in legumes and the metabolic activity of isoflavones in dairy cows when feeding legumes may affect the milk production ability in BMECs.


Assuntos
Isoflavonas , Fator de Transcrição STAT5 , Animais , Caseínas/metabolismo , Bovinos , Claudina-3/metabolismo , Células Epiteliais/metabolismo , Equol/metabolismo , Feminino , Isoflavonas/farmacologia , Lactoferrina/metabolismo , Glândulas Mamárias Animais , Leite/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/genética
16.
Nutrients ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35276910

RESUMO

Soy isoflavones have been suggested as an alternative treatment for managing postmenopausal symptoms and promoting long-term health due to their structural similarity to mammalian estrogen and ability to bind to estrogen receptors. Among all soy isoflavones and their metabolites, (S)-equol is known for having the strongest estrogenic activity. Equol is a metabolite of the soy isoflavone daidzein produced through intestinal bacterial metabolism. However, more than half of the human population is not able to produce equol due to the lack of equol-producing bacteria in their gastrointestinal tract. The interpersonal variations in the gut microbiome complicate the interpretation of data collected from humans. Furthermore, because rodents are efficient equol-producers, translatability between rodent models and humans is challenging. Herein, we first summarized the current knowledge of the microbial conversion of daidzein to equol, its relation to health, and proposed the need for developing model systems by which equol production can be manipulated while controlling other known confounding factors. Determining the necessity of equol-producing capacity within a gut microbial community when consuming soy as a functional ingredient, and identifying strategies to maximize equol production by modulating the gut microbiome, may provide future therapeutic approaches to improve the health of postmenopausal women.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Isoflavonas , Equol/metabolismo , Feminino , Humanos , Isoflavonas/metabolismo , Pós-Menopausa
17.
Nutrients ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35276942

RESUMO

Global trends focus on a balanced intake of foods and beverages to maintain health. Drinking water (MIU; hardness = 88) produced from deep sea water (DSW) collected offshore of Muroto, Japan, is considered healthy. We previously reported that the DSW-based drinking water (RDSW; hardness = 1000) improved human gut health. The aim of this randomized double-blind controlled trial was to assess the effects of MIU on human health. Volunteers were assigned to MIU (n = 41) or mineral water (control) groups (n = 41). Participants consumed 1 L of either water type daily for 12 weeks. A self-administered questionnaire was administered, and stool and urine samples were collected throughout the intervention. We measured the fecal biomarkers of nine short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA), as well as urinary isoflavones. In the MIU group, concentrations of three major SCFAs and sIgA increased postintervention. MIU intake significantly affected one SCFA (butyric acid). The metabolic efficiency of daidzein-to-equol conversion was significantly higher in the MIU group than in the control group throughout the intervention. MIU intake reflected the intestinal environment through increased production of three major SCFAs and sIgA, and accelerated daidzein-to-equol metabolic conversion, suggesting the beneficial health effects of MIU.


Assuntos
Água Potável , Águas Minerais , Equol/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Água do Mar
18.
Nutrients ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35334882

RESUMO

The intake of selected minerals, especially zinc, calcium and selenium, and high consumption of dietary isoflavones are recognised as factors influencing prostate cancer risk. Moreover, changes in levels of some essential elements are characteristic of the disease. Here, we examined the combined effects of main dietary isoflavonoids (genistein, daidzein and its metabolite, equol) and minerals implicated in prostate cancer, namely zinc, selenium, copper, iron and calcium, on LNCaP prostate cancer cells proliferation. Secondly, we evaluated the influence of the combinations on genotoxicity of model mutagens, 4-nitroquinoline oxide (4NQO) and 2-aminoanthracene (2AA), in the umu test. All combinations of isoflavonoids and minerals inhibited prostate cancer cells growth. However, only mixtures with iron ions had significantly stronger effect than the phytochemicals. Interestingly, we observed that only genistein attenuated genotoxicity of 4NQO. The addition of any tested mineral abolished this effect. All tested isoflavonoids had anti-genotoxic activity against 2AA, which was significantly enhanced in the presence of copper sulphate. Our results indicate that the tested minerals in physiological concentrations had minimal influence on the anti-proliferative activity of isoflavonoids. However, they significantly modulated the anti-genotoxic effects of isoflavonoids against both metabolically activated and direct mutagens. Thus, the minerals intake and nutritional status may modulate protective action of isoflavonoids.


Assuntos
Flavonas , Neoplasias da Próstata , Equol/metabolismo , Genisteína/farmacologia , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/prevenção & controle
19.
BMC Genomics ; 23(1): 182, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247986

RESUMO

BACKGROUND: Equol, an isoflavonoid metabolite with possible health benefits in humans, is known to be produced by some human gut bacteria. While the genes encoding the equol production pathway have been characterized in a few bacterial strains, a systematic analysis of the equol production pathway is currently lacking. RESULTS: This study presents an analysis of the taxonomic distribution and evolutionary history of the gene cluster encoding the equol production pathway. A survey for equol gene clusters within the Genome Taxonomy Database bacterial genomes and human gut metagenomes resulted in the identification of a highly conserved gene cluster found in nine bacterial species from the Eggerthellaceae family. The identified gene clusters from human gut metagenomes revealed potential variations in the equol gene cluster organization and gene content within the equol-producing Eggerthellaceae clades. Subsequent analysis showed that in addition to the four genes directly involved in equol production, multiple other genes were consistently found in the equol gene clusters. These genes were predicted to encode a putative electron transport complex and hydrogenase maturase system, suggesting potential roles for them in the equol production pathway. Analysis of the gene clusters and a phylogenetic reconstruction of a putative NAD kinase gene provided evidence of the recent transfer of the equol gene cluster from a basal Eggerthellaceae species to Slackia_A equolifaciens, Enteroscipio sp000270285, and Lactococcus garvieae 20-92. CONCLUSIONS: This analysis demonstrates that the highly conserved equol gene cluster is taxonomically restricted to the Eggerthellaceae family of bacteria and provides evidence of the role of horizontal gene transfer in the evolutionary history of these genes. These results provide a foundation for future studies of equol production in the human gut and future efforts related to bioengineering and the use of equol-producing bacteria as probiotics.


Assuntos
Actinobacteria , Isoflavonas , Actinobacteria/genética , Equol/metabolismo , Humanos , Isoflavonas/metabolismo , Família Multigênica , Filogenia
20.
Int J Cardiol ; 352: 158-164, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122909

RESUMO

BACKGROUND: Equol, an isoflavone (ISF)-derived metabolite by the gut microbiome in certain individuals termed as equol-producers, might be the key anti-atherogenic component of ISFs. Our objective was to determine the association between equol-producing status and aortic atherosclerosis assessed as aortic calcification (AC). METHODS: This population-based study of 302 Japanese men aged 40-49, free of cardiovascular disease, examined serum levels of equol and ISFs, AC in the entire aorta by electron-beam computed tomography with Agatston method, and cardiovascular risk factors. We defined equol-producers as individuals with serum levels of equol ≥20 nM and prevalent AC as an AC score ≥ 10. We analyzed the association between equol-producing status and AC using Tobit and logistic regressions. We performed age-stratified analyses since age was a significant effect-modifier. RESULTS: The 70th to 90th percentile AC scores were 4 to 243 in equol-producers and 15 to 444 in non-producers, respectively. Overall, equol-producers (41% of the sample) had lower AC scores (-209, [95% confidence interval (CI): -455, 36]) and odds of AC (odds ratio (OR): 0.7 [95% CI: 0.4, 1.3]), although not statistically significant, compared to non-producers after controlling for cardiovascular risk factors. Among men aged 46-49, equol-producers had significantly lower AC scores (-428 [95% CI: -827, -29]). Furthermore, there were null associations between serum levels of ISFs and both AC score and the odds of AC. CONCLUSION: In middle-aged Japanese men, equol-producers had a non-significantly lower burden of aortic atherosclerosis than non-producers whereas ISFs had a null association. Studies with larger sample sizes in both sexes are warranted.


Assuntos
Microbioma Gastrointestinal , Isoflavonas , Adulto , Equol/metabolismo , Feminino , Humanos , Isoflavonas/metabolismo , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...